
www.hakin9.org14

BASICS

SNORT

Collection and Exploration of Large Data

www.hakin9.org 15SNORT

Collecting and exploring monitoring data is
becoming increasingly challenging as networks
become larger and faster. Solutions based on

both SQL-databases and specialized binary formats do
not scale well as the amount of monitoring information
increases. In this article I would like to approach to
the problem by using a bitmap database that allows
to implementation of an efficient solution for both data
collection and retrieval.

NetFlow and sFlow
NetFlow and sFlow are the current standards for
building traffic monitoring applications. Both are based
on the concept of a traffic probe (or agent in the sFlow
parlance) that analyses network traffic and produces
statistics, known as flows, which are delivered to a
central data collector. As the number of flows can be
pretty extremely high, both standards use sampling
mechanisms in order to reduce the workload on
bothof the probe and collectors. In sFlow the use of
sampling mechanisms is native in the architecture so
that it can be used on agents to effectively reduce the
number of flows delivered to collectors. This has a
drawback in terms of result accuracy while providing
results with quantifiable accuracy. With NetFlow, the
use of sampling (both on packets and flows) leads to
inaccuracy and this means that flows sampling is very
seldom used in NetFlow hence there is no obvious
mechanism for reducing the number of flows records

while preserving accuracy. For these reasons, network
operators usually avoid sampling data hence have to
face with the problem of collecting and analyzing a
large number of flows that is often solved using a flow
collector that stores data on a SQL-based relational
database or on disk in raw format for maximum
collection speed. Both approaches have pros and
cons; in general SQL-based solutions allows users to
write powerful and expressive queries while sacrificing
flow collection speed and query response time,
whereas raw-based solutions are more efficient but
provide limited query facilities.

The motivation is to overcome the limitations of
existing solutions and create a new generation of a
flow collection and storage architecture that exploits
state-of-the-art indexing and querying technologies. In
the following I would like to describe the design and
implementation of nProbe , an open-source probe and
flow collector, that allows flows to be stored on disk
using the FastBit database.

Architecture and Implementation
nProbe is an open-source NetFlow probe that also
supports both NetFlow and sFlow collection and, flow
conversion between version (for instancei.e. convert v5
to v9 flows). It fully supports the NetFlow v9 specification
so giving it has the ability to specify flow templates (i.e. it
supports flexible netflow) that are configured at runtime
when the tool is started (Figure 1).

Collection and
Exploration of Large Data
Why the use of FastBit is a major step ahead when
compared with state of the art relational database tools
based on relational databases.

What you will learn…
• Basics of building traffic monitoring applications
• Data Collection and Exploration

What you should know…
• A basic knowledge of architecture and implementation of

traffic monitoring tools
• A basic knowledge of TCP/IP

www.hakin9.org14

BASICS

SNORT

Collection and Exploration of Large Data

www.hakin9.org 15SNORT

• In order to both overcome the limitations of
relational databases, and avoid raw flow dump due
to limited query facilities, I decided to investigate
the use of column-based databases and in
particular, of FastBit .

Validation and Performance Evaluation
I have used the FastBit library for creating an efficient flow
collection and storage system. This is to demonstrate
that nProbe with FastBit is a mature solution that can
be used on in a production environment. In order to
evaluate the FastBit’s performance, nProbe has been
deployed in two different environments:

Medium ISPs
The average backbone traffic is around 250 Mbit/sec
(about 40K pps). The traffic is mirrored onto a Linux
PC (Linux Fedora Core 8 32 bit, Kernel 2.6.23, Dual
Core Pentium D 3.0 GHz, 1 GB of RAM, two SATA III
disks configured with RAID 1) that runs nProbe in probe
mode. nProbe computes the flows and saves them on
disk using FastBit. In order to reduce the number of
flows, the probe is configured to save flows in NetFlow
v9 bi-directional format with maximum flow duration of
5 minutes. In average the probe generates 36 million
flows/day. Each FastBit partition stores one hour of
traffic. Before deploying nProbe, flows were collected
and stored in a MySQL database.

Large ISPs
nProbe is used in collector mode. It receives flows
from 8 peering routers, with peak flow export of 85 K
flows/sec. The collection server is a fast machine with
8 GB of memory, running Ubuntu Linux 9.10 server
64 bit. Each FastBit partition stores five minutes
of traffic that occupy about 5.8 GB of disk space.
A second server running Ubuntu Linux 9.10 server
64bit and 24 GB of memory is used to query the flow
data. The FfastBbit partitions are saved to a NFS
mount on a local storage server. Before deploying

When used as probe and collector, nProbe
supports flow collection and storage to either raw
files or relational databases such as MySQL and
SQLite. Support of relational databases has always
been controversial as users appreciated the ability to
search flows using a SQL interface, but at the same
time flow dump to database is usually enable only
realistic for small sites. The reason is that enabling
database support could lead to the loss of flows
due to the database overhead. There are multiple
reasons that contribute to this behavior and in
particularincluding:

• Network latency and multi-user database access
for network-based databases.

• Use of SQL that requires flow information to be
converted into text that is then interpreted by the
database, instead of using an API for directly writing
into the database.

• Slow-down caused by table indexes update during
data insertion.

• Poor database performance when searching data
during data insert.

Databases offer mechanisms for partially avoiding
some of the above issues, which includinge:

• Data insert in batch mode instead of doing it in real
time.

• Avoid network communications by using file-based
databases.

• Disable database transactions.
• Use efficient table format optimized for large data

tables.
• Not defining tables indexes therefore avoiding the

overhead of index updates, though usually results
in slower data search time.

Other database limitations include the complexity of
handling large databases containing weeks of data,
and purging old data while still accommodating new
flow records. Many developers partition the database
often creating a table per day that is then dropped
when no longer needed.

The use of file-based databases such as SQLite offer
a few advantages with respect

to networked relational databases, as:

• It is possible to periodically create a new database
(e.g. one database per hour) for storing flows
received during that hour, this is in order to avoid
creating large databases.

• According to some tests performed, the flow insert
throughput is better than networked-databases but
still slower than raw flow dump. Figure 1.

������

���������

������������������������������������

�������

�������������������������

www.hakin9.org16

BASICS

SNORT www.hakin9.org

nProbe, flows were collected using nfdump and each
month the total amount of flow dumps exceeds 4 TB
of disk space. The goal of these two setups is to both
validate nProbe with FastBit on two different setups
and compare the results with the solution previously
used.

FastBit vs Relational Databases
Let´s compare the performance of FastBit with respect
to MySQL (version 5.1.40 64 bit), a popular relational
database. As the host running nProbe is a critical
machine, in order not to interfere with the collection
process, two days worth of traffic was dumped in
FastBit format, and then transfered to a Core2Duo 3.06
GHz Apple iMac running MacOS 10.6.2. Moving FastBit
partitions across machines running different operating
systems and word length (one is 32 the other is 64 bit)
has not required any data conversion. This is a good
feature as over-time collector hosts can be based on
various operating systems and technology; hence flow
archives can be used immediately without any data
conversion is a desirable feature. In order to evaluate
how FastBit partition size affects the search speed,
hourly partitions have been merged into a single daily
partition. In order to compare both approaches, five
queries can be defined:

• Q1: SELECT COUNT(*),SUM(PKTS),SUM(BYTES) FROM NETFLOW
• Q2: SELECT COUNT(*) FROM NETFLOW WHERE L4 _ SRC _

PORT=80 or L4 _ DST _ PORT=80

• Q3: SELECT COUNT(*) FROM NETFLOW GROUP BY IPV4 _ SRC _

ADDR

• Q4: SELECT IPV4 _ SRC _ ADDR,SUM(PKTS),SUM(BYTES) AS s

FROM NETFLOW GROUP BY IPV4 _ SRC _ ADDR ORDER BY s DESC

LIMIT 1,5

• Q5: SELECT IPV4 _ SRC _ ADDR, L4 _ SRC _ PORT, IPV4 _ DST _

ADDR, L4 _ DST _ PORT, PROTOCOL, COUNT(*), SUM(PKTS),

SUM(BYTES) FROM NETFLOW WHERE L4 _ SRC _ PORT=80 or L4 _

DST _ PORT=80 GROUP BY IPV4 _ SRC _ ADDR, L4 _ SRC _ PORT,

IPV4 _ DST _ ADDR, L4 _ DST _ PORT, PROTOCOL

FastBit partitions have been queried using the fbquery
tool with appropriate command line parameters. All
MySQL tests have been performed on the same
machine with no network communications between
client and server. In order to evaluate the influence of
MySQL indexes on queries, the same test has been
repeated with and without indexes.

Data used for testing washave been captured on
Oct 12th and 13th (~68 million flows) and contained
a subset of NetFlow fields (IP source/destination, port
source/destination, protocol, begin/end time). The
table below compares the disk space used by MySQL
and FastBit. In the case of FastBit, indexes have been
computed on all columns.

Merging FastBit partitions does not usually improve
the search speed but instead queries on merged data
requires more memory as FastBit has to load a larger
index in memory. In terms of query performance,
FastBit is far superior compared with MySQL as shown
in Table 2:

• Queries that require access only to indexes take
less than a second, regardless of the query type.

• Queries that require data access are at least an
order of magnitude faster that on MySQL.

• Index creation time on MySQL takes many minutes
and it prevents its use in real life when importing
data in (near-)realtime, and also indexes also take
a significant amount of disk space.

• Indexes on MySQL do not speed up queries,
contrary to FastBit.

• Disk speed is an important factor for accelerating
queries. In fact running the same test twice with
data already cached in memory, significantly
decreases the query speed. The use of RAID 0
has demonstrated that the performance speed has
been improved.

Open Issues and Future Work
Tests on various FastBit configurations have shown
that the disk is an important component that has a
major impact on the whole system. I am planning to
explore the use of solid-state drives in order to see if
the overall performance can benefit from it.performance
increases.

A main limitation of
FastBit is the lack of data
compression as it currently
compresses only indexes but
not data. This is a feature is
planned to add, as it allows
disk space to be saved
hence to reducereducing
the time needed to read the
data.

Table 1. FastBit vs MySQL Disk Usage (results are in GB)

MySQL No/With Indexes 1.9 / 4.2

FastBit
Daily Partition (no/with Indexes) 1.9 / 3.4

Hourly Partition (no/with Indexes) 1.9 / 3.9

Table 2. FastBit vs MySQL Query Speed (results are in seconds)

Query
MySQL Daily Partitions Hourly Partitions

No Index With Indexes No Cache Cached No Cache Cached
Q1 20.8 22.6 12.8 5.86 10 5.6

Q2 23.4 69 0.3 0.29 1.5 0.5

Q3 796 971 17.6 14.6 32.9 12.5

Q4 1033 1341 62 57.2 55.7 48.2

Q5 1754 2257 44.5 28.1 47.3 30.7

www.hakin9.org16

BASICS

SNORT www.hakin9.org

This article is the base for developing interactive data
visualization tools based on FastBit partitions. Thanks
to recent innovations in web 2.0, there are libraries such
as the Google Visualization API that allow separating
data rendering from data source. Currently we are
extending nProbe adding an embedded web server
that can make FastBit queries on the fly and return
query results in JSON format. The idea is to create an
interactive query system that can visualize both tabular
data (e.g. flow information) and graphs (e.g. average
number of flows on port X over the last hour) by
performing FastBit queries. This way the user does not
have to interact with FastBit tools at all, and can focus
on data exploration.

Final Remarks
The use of FastBit is a major step ahead when
compared with state of the art tools based on both
relational databases and raw data dumps. When
searching data on datasets of a few million records
the query time is limited to a few seconds in the worst
case, whereas queries that just use indexes are
completed within a second. The consequence of this
major speed improvement is that it is now possible
to query data in real time and avoid updating costly
counters every second, as using bitmap indexes it
is possible to produce the same information when
necessary. Finally this work paves the way to the
creation of new monitoring tools on large data sets
that can interactively analyze traffic data in near-real
time, contrary to what usually happens with most tools
available today.

Availability
This work is distributed under the GNU GPL license and
is available at the ntop home page http://www.ntop.org/
nProbe.html. The nBox appliance embedded withing
a pre-installed ntop and nProbe software can be
requested at www.wuerth-phoenix.com/nbox.

LUCA DERI, FOUNDER OF NTOP
Luca Deri was born in 1968. Although he was far too young to
remember, the keywords of that year were freedom, equality,
free thinking, revolution. In early 70s many free radio stations
had birth here in Italy because their young creators wanted to
have a way for spreading their thoughts, ideas, emotions and
tell the world that they were alive ‘n kickin’. The Internet today
represents for him what free radio represented in the 70s. He
wrote his PhD on Component-based Architecture for Open,
Independently Extensible Distributed Systems. Luca Deri is
the founder of Ntop.

Collection and Exploration of Large Data

�����������������������������������
�����������������
���������������������������������������
���������������������������
����������������������������
���

� ����������������
���
���

� �������������
��
���������������������������������
��

� ���������������������

���������������������������

�����������������������������
������������������������

����

����

����

������ ����
����������
�������

�������������
�����

��������������

��
��

��
��

��
��

�������
��������
�����������

�������

�������

���
��
�����������

���
�������������������

�
��

��
��

��
�
��

�
��
��

�

������������

���
���
����������������������������

�������

http://www.wuerth-phoenix.com/nBox

