

Mehr Klarheit für Ihre Netzwerkperformance

Die Integration von ntop in die Überwachungslösung NetEye

by Georg Kostner

About Würth Phoenix

- IT and Consulting Company of the Würth-Group
- Headquarter in Italy, European-wide presence, more than 100 employees
- International experience in Business Software and IT Management
- System Monitoring Network Monitoring
- ITIL certified, Nagios Solution Provider, OTRS Certified Partner

Our mission is to improve the business productivity of our customers by managing working processes more efficiently.

To assure this we offer complete and international proven IT- solutions in a well-known Würth-quality.

Facts & figures

- More than 600 customers worldwide
- Over 7.000 ERP and CRM users
- 25.000 monitored hosts
- 4 offices in 3 countries
- HQ in Italy
- Core offers in Business Software and IT System Management

WÜRTHPHOENIX NetEye

... the market proven alternative

- WÜRTHPHOENIX NetEye is an Open Source package to monitor the IT infrastructure
- The solution has been developed to simplify your IT infrastructure management increasing its reliability
- NetEye is based on proven Open Source monitoring solutions with over 250.000 estimated worldwide users
- Würth Phoenix has **10 years experience** in implementing monitoring system and provides support services.
- Würth Phoenix is Nagios Solution Provider

Network Monitoring with NetEye

... visibility into a datacenter

ntop

WÜRTHPHOENÏX

... more than software

Network Traffic Analysis with NetFlow

...measure your latency, bandwidth, in-outbound traffic

Network Monitoring

...what you can analyze with NetEye

- Network latency and bandwidth monitoring point to point, network interface in/outbound
- Definition of active/passive checks (SNMP Requests, SNMP Traps)
- Graphs for in/outbound traffic min, avg, max values on switch, routers

Monitor your network

...detailed graphs

Inbound – Outbound usage

Bandwidth

Network Traffic Monitoring with NetFlow

... the structural idea

Network Traffic Monitoring

...details on packets, bytes and ip/port

- Network traffic analysis based on protocols
- Source IP and Destination IP identification
- Filtering on single TCP / UDP ports
- Capability of network analyzing on packets, bytes per ip/port

Date flow start	Duration Proto	Src IP Addr:Port	Dst IP Addr:Port	Flags Tos	9 Packets	Bytes Flows	5
2011-11-07 19:19:52	2.856 4670.430 TCP	10.62.1.91:33964 ->	10.67.10.2:443	.APRSF (444663	624.2 M 152	2
2011-11-07 19:19:53	3.063 4670.242 TCP	10.67.10.2:443 ->	10.62.1.91:34330	.AP.SF (45513	19.1 M 152	2
2011-11-07 19:19:52	2.869 4670.418 TCP	10.67.10.2:443 ->	10.62.1.91:33964	.AP.SF (222389	11.6 M 152	2
2011-11-07 20:12:38	8.499 30.188 TCP	10.62.1.66:49741 ->	10.67.10.2:25	.AP.SF (4252	6.3 M 2	2
2011-11-07 20:34:49	9.174 23.697 TCP	10.62.1.66:50425 ->	10.67.10.2:25	.AP.SF (3466	5.2 M 2	2
2011-11-07 19:19:53	3.972 13.393 TCP	10.62.1.66:48113 ->	10.67.10.2:25	.AP.SF (2485	3.7 М 2	2
2011-11-07 19:19:53	3.042 4670.263 TCP	10.62.1.91:34330 ->	10.67.10.2:443	.APRSF (44739	2.4 M 152	2
2011-11-07 19:52:53	3.356 8.910 TCP	10.62.1.66:49148 ->	10.67.10.2:25	.AP.SF () 1312	1.9 м 2	2
2011-11-07 19:58:37	7.980 4.359 TCP	10.62.1.66:49323 ->	10.67.10.2:25	.AP.SF (626	893300 2	2
2011-11-07 19:53:49	9.626 1439.270 TCP	10.62.1.91:58125 ->	10.67.10.2:443	.AP.S. (966	620088 36	5

Top 10 flows ordered by bytes:

... more than software

Network visibility into virtualized infrastructure

...collection of NetFlow and Key Performance Measures

Future monitoring targets...

What is causing slow performance? Network or Application?

...the approach of WÜRTHPHOENIX NetEye

Real User Monitoring

NetEye provides Real User Monitoring thanks to KPM metrics from nProbe:

Application Latency Monitoring measures the response time of each user transaction analyzing the communication performance to get three key performance indicators

- Client Network Latency
- Server Network Latency
- Application Latency

End User Latency Monitoring

...how the response time is calculated

- Cycling monitoring is computed on Client Network, Server Network, Application Latency for each End User requests to discover slowness on network latency or applications.
- System alerts are generated on deviation from the normal End User performance

Alerts generated on latency deviation

...how to record the baselines

- The system runs for couple of days in normal network and application conditions to record the baselines
- The system calculates the average client/server/application latency based on the requests in the defined period
- At this point a periodic check runs (i.e. every 5 minutes) comparing the average latency with those of the relative baselines
- Warning and critical are generated based on customizable thresholds percentage
- Minimum and maximum watermarks can also be configured to create reasonable statistics (i.e. if the average latency are very low values (5ms), the percentage are not a reliable mechanism for the check)

Baselines definition

- Calculation of the average Client/ Server/Application latency
- Warning and critical notifications based on thresholds percentage

Application Latency Monitoring

...recorded baselines

File	File Edit Window															
	Application Latency Monitor															
Baselir	ne	Query	Graphs	Status	Configuration											
								в	acolino							
	Id	Name	Descript	ion	A	op Lat	Server Lat	Client Lat	Bytes	Sessions/mii	Sessions	Attempt	Flapping	Last Check	Status 👻	
⇒	Ness	sun filtro app	licato							1				1		
	7	_	Scar App)	0.	154	3.558	96.988	13136.000	92.000	462	0	3	02/11/11 09:50:01	CRITICAL	Â
	2		Dropbox		5	5.675	0.000	0.000	854.000	1.000	8	0	0	02/11/11 09:50:01	ОК	E
	3		Faceboo	k	0	249	26.812	0.090	10957.000	9.000	49	0	0	02/11/11 09:50:01	ОК	
	5		Main We	b	0	061	0.151	18.070	25843.000	33.000	165	0	0	02/11/11 09:50:01	ОК	
	6		Trendmi	cro Update	0	213	5.756	1.330	4480.000	24.000	121	0	0	02/11/11 09:50:01	ОК	
	8		Fime Ap	р	0	022	0.296	0.276	8049.000	100.000	501	0	0	02/11/11 09:50:01	ок	
	13		NetEye U	Jpdates	0	001	0.239	20.817	1931.000	14.000	73	0	0	02/11/11 09:50:01	ОК	
	14		CIS		0	128	41.542	0.173	4148.000	62.000	313	0	4	02/11/11 09:50:01	ОК	
	16		NetEye E	Blog	0	187	0.090	32.738	24184.000	1.000	8	0	0	02/11/11 09:50:01	ОК	
	17		Sylvestrip	x	0	100	0.433	1.517	2340.000	30.000	153	0	0	02/11/11 09:50:01	ОК	-
1 - 35	di 35 (elementi														
Filter: /	ilter sf	hown baselin	es													
												Refre	sh Baselin	e Check Baseline	Show Rrd for	selected

Monitoring metrics for each Application

Baseline: 0.095 Actual: -65% Average of: 5m Min: 30.000 Max: 80.000 Ref: 0.095 Warning: + 10% (0.105) Critical: + 20% (0.115) Value under minimum allowed => OK

Latency indicators

...aggregated by locations

Netgroup/Application/Subnet/Client	Requests	App Latency	Server Latency	Client Latency	Bytes	Status
Bolzano	8862	0.437	21.762	4.100	67,2M	
🖃 Roma	3640	0.510	0.255	18.153	97,3M	
UNMATCHED	3308	0.509	0.252	18.762	92,6M	
E Facebook	124	1.122	0.341	14.775	2,7M	
	18	0.029	0.150	10.013	63,5k	
NetEye Updates	3	0.000	0.245	8.853	5,5k	
Google Application	187	0.169	0.267	10.548	1,8M	
ULAN 1 LAN LAN	124	1.122	0.341	14.775	2,7M	
■ 10.62.11.153 V User IP	18	2.871	0.212	22.531	1,3M	
 10.62.11.20 	23	3.413	0.595	10.391	1,2M	
 10.62.11.75 	83	0.107	0.298	14.308	174,9k	

...aggregated by clients

Client/Subnet/Netgroup/Application	Requests	App Latency	Server Latency	Client Latency	Bytes	Status
10.62.11.157	736	0.384	0.154	36.973	27,2M	
10.62.11.21	1	0.001	0.568	75.453	537,9b	
10.62.37.166	12	0.033	3.362	156.045	182,0k	
10.62.37.172	44	0.078	3.886	41.718	466,1k	CRITIC
10.62.37.175	50	0.056	14.952	255.339	379,9k	CRITIC
10.62.37.25	54	0.031	4.202	55.469	303,3k	CRITIC
10.62.37.53	30	0.055	8.162	44.943	389,5k	CRITIC
10.62.38.50	50	0.035	4.586	273.501	407,9k	CRITIC
10.62.4.23	80	0.239	104.869	0.213	127,5k	CRITIC
10.62.4.30	98	0.099	108.672	0.199	148,2k	CRITIC

Latency indicators

...aggregated by applications

Netgrou	up/Application/Subnet/Client	Requests	App Latency	Server Latency	Bvtes	Status	
÷	Dropbox	10	55.710	88.424	8.4k	CRITICAL	*
÷	Facebook	143	10.639	57.389	1.0M	CRITICAL	
÷	CIS	178	0.657	51.700	1.2M	CRITICAL	
÷	Scar App	222	0.030	4.380	2.5M	WARNING	
÷	UNMATCHED	3790	0.276	20.065	90.1M	OK	
÷	Repubblica	21	0.023	5.162	183.6k	OK	=
÷	Main Web	7	0.172	0.102	65.0k	OK	
÷	Trendmicro Update	37	0.050	4.882	1.5M	OK	
+	Fime App	75	0.005	0.321	128.1k	OK	
+	Skype	1	0.041	18.320	1.0k	OK	
+	NetEye Updates	43	0.000	0.422	83.2k	OK	

Drill down to URL details

URL	From	Requests	App Latency	Server Latency	Client Latency	Bytes	
http://googleads.g.doubleclick.net/p	Scar	1	0.690	11.582	10.987	3.2k	*
http://go.microsoft.com/fwlink/%3F	Scar	2	0.182	88.396	5.713	3.1k	
http://go.microsoft.com/fwlink/\%3F	Scar	7	0.181	88.201	4.943	12.4k	
http://g.microsoft.com/_0sfdata/1\%	Scar	1	0.110	55.224	3.700	1.4k	
http://fxfeeds.mozilla.com/it/firefox/	Scar	3	0.023	10.441	6.512	4.8k	
http://emea.rel.msn.com/default.asp	Scar	5 http://	/du106w.dub1	4.020	1.4k		
http://du106w.dub106.mail.live.com/	Scar	Tup.//	au roow.aub i	5.763	953.5k		

Mehr Klarheit für Ihre Netzwerk Performance

Luca Deri <deri@ntop.org>

About ntop.org [1/3]

- Private company devoted to development of Open Source network traffic monitoring applications.
- ntop (circa 1998) is the first app we released and it is a web-based network monitoring application.

About ntop.org [2/3]

Our software is powering many commercial products...

cisco

Integrated ASIC with JDSU technology

About ntop.org [3/3]

- ...and allows packets to be received and transmitted at 1/10 Gbit line rate with no loss, any packet size on commodity NICs developed by our partner
- So we accelerate not just our applications but also third party open source solutions including:

Problem Statement [2/3]

- Popular hardware probes (Juniper, Cisco) are costly, limited (usually no analysis beyond packet header) and often not extensible.
- Consequences:
 - Monitoring evolution is capped by hardware vendors.
 - Commercial probes monitor what the vendor <u>wants</u> (e.g. Cisco TelePresence) and not what the user <u>needs</u>.
 - The Internet is changing so fast (Twitter, YouTube, NetFlix...) that collectors relying on hardware probes cannot provide timely answers to continuously evolving monitoring needs.

ntop and Würth-Phoenix Goals

- Provide better, yet price effective, traffic monitoring by allowing collectors to have increased traffic visibility.
- NetEye will integrate thew new network metrics to report users about the probe findings.
- ntop+NetEye joint forces are the <u>only</u> way for producing comprehensive and accurate traffic reports able to offer at a <u>fraction of price</u> what <u>many</u> commercial products do together.

Monitoring Architecture

Limitations of Monitoring Systems

- Visibility limited to packet header (payload agnostic).
- Packet encapsulations (e.g. GRE, PPP, GTP) are not always handled, so that we don't know what happens inside tunnels.
- Unable to monitor intra-virtual machines (VMs) traffic (no cloud-friendly).
- Windows PCs are not first-class citizens.

Why We're Different?

- We provide evidence of networks issues
 You know exactly what has happened.
- We measure KPM (Key Performance Metrics)
 You know the health of your network services.
- We recognize network protocols
 - We tell you exactly what applications are using your network.
- We compute your network trends
 - We provide you a forecast for growing your network before it's too late.

Providing Evidence [1/2]

- Network administrators often receive generic issue reports:
 - "Internet browsing is slow and often URLs cannot be accessed. Trying again usually helps for visiting the target web site."
- Flow-based traffic analysis provides an <u>average</u> view of a network communication.
- Network services (e.g. web surfing) are in good state when all components are healthy.

Providing Evidence [2/2]

- Simple actions such as web surfing require the interaction of various actors.
- One a few of them are under our control.

Providing Evidence: DNS

[NFv9 57677][IPFIX 35632.205] %DNS_QUERY [NFv9 57678][IPFIX 35632.206] %DNS_QUERY_ID [NFv9 57679][IPFIX 35632.207] %DNS_QUERY_TYPE [NFv9 57680][IPFIX 35632.208] %DNS_RET_CODE [NFv9 57681][IPFIX 35632.209] %DNS_NUM_ANSWER [NFv9 57558][IPFIX 35632.86] %APPL_LATENCY_SEC [NFv9 57559][IPFIX 35632.87] %APPL_LATENCY_USEC DNS query DNS query transaction Id DNS query type (e.g. 1=A, 2=NS..) DNS return code (e.g. 0=no error) DNS # of returned answers Application latency (sec) Application latency (usec)

#

WhenIDNS_ClientIASIClientCountryIClientCityIDNS_ServerlQueryINumRetCodelRetCodel NumAnswerlNumQueryTypelQueryTypelTransactionIdIAnswersIAuthNSs

#

1326819546.137IA.B.C.DIXXXXIUSII192.12.192.5lblogsearch.google.itl0INOERRORI0I1IAI52017II ns2.google.com;ns1.google.com;ns4.google.com;ns3.google.com

Providing Evidence: HTTP

[NFv9 57652][IPFIX 35632.180] %HTTP_URL [NFv9 57653][IPFIX 35632.181] %HTTP_RET_CODE [NFv9 57654][IPFIX 35632.182] %HTTP_REFERER [NFv9 57655][IPFIX 35632.183] %HTTP_UA [NFv9 57656][IPFIX 35632.184] %HTTP_MIME HTTP URL HTTP return code (e.g. 200, 304...) HTTP Referer HTTP User Agent HTTP Mime Type

#

Client Server Protocol Method URL HTTPReturnCode Location Referer UserAgent ContentType Bytes BeginTime EndTime Flow Hash Cookie Terminator ApplLatency(ms) ClientLatency(ms) ServerLatency(ms) Application

#

192.168.0.200 <u>www.macintouch.com</u> http GET /images/filewave01.gif 200 <u>www.macintouch.com</u> Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/416.12 (KHTML, like Gecko) Safari/416.13

27750 1133966828.928 1133966830.606 26992029 0 S 0.261 0.080 114.095 HTTP

Providing Evidence:VoIP

[NFv9 57602][IPFIX 35632.130] %SIP CALL ID [NFv9 57603][IPFIX 35632.131] %SIP CALLING PARTY [NFv9 57604][IPFIX 35632.132] %SIP CALLED PARTY [NFv9 57605][IPFIX 35632.133] %SIP_RTP_CODECS [NFv9 57606][IPFIX 35632.134] %SIP_INVITE_TIME [NFv9 57607][IPFIX 35632.135] %SIP TRYING TIME [NFv9 57608][IPFIX 35632.136] %SIP RINGING TIME [NFv9 57609][IPFIX 35632.137] %SIP_INVITE_OK_TIME [NFv9 57610][IPFIX 35632.138] %SIP_INVITE_FAILURE_TIME [NFv9 57611][IPFIX 35632.139] %SIP_BYE_TIME [NFv9 57612][IPFIX 35632.140] %SIP_BYE_OK_TIME [NFv9 57613][IPFIX 35632.141] %SIP_CANCEL_TIME [NFv9 57614][IPFIX 35632.142] %SIP_CANCEL_OK_TIME [NFv9 57615][IPFIX 35632.143] %SIP RTP IPV4 SRC ADDR [NFv9 57616][IPFIX 35632.144] %SIP_RTP_L4_SRC_PORT [NFv9 57617][IPFIX 35632.145] %SIP_RTP_IPV4_DST_ADDR [NFv9 57618][IPFIX 35632.146] %SIP RTP L4 DST PORT [NFv9 57619][IPFIX 35632.147] %SIP_FAILURE_CODE [NFv9 57620][IPFIX 35632.148] %SIP_REASON_CAUSE

SIP call-id SIP Call initiator SIP Called party SIP RTP codecs SIP SysUptime (msec) of INVITE SIP SysUptime (msec) of Trying SIP SysUptime (msec) of RINGING SIP SysUptime (msec) of INVITE OK SIP SysUptime (msec) of INVITE FAILURE SIP SysUptime (msec) of BYE SIP SysUptime (msec) of BYE OK SIP SysUptime (msec) of CANCEL SIP SysUptime (msec) of CANCEL OK SIP RTP stream source IP SIP RTP stream source port SIP RTP stream dest IP SIP RTP stream dest port SIP failure response code SIP Cancel/Bye/Failure reason cause

Providing Evidence: MySQL

[NFv9 57667][IPFIX 35632.195] %MYSQL_SERVER_VERSION [NFv9 57668][IPFIX 35632.196] %MYSQL_USERNAME [NFv9 57669][IPFIX 35632.197] %MYSQL_DB [NFv9 57670][IPFIX 35632.198] %MYSQL_QUERY [NFv9 57671][IPFIX 35632.199] %MYSQL_RESPONSE

MySQL server version MySQL username MySQL database in use MySQL Query MySQL server response

KPM: Network and Application Performance [1/3]

- Client and server network delay are determined when the nProbe observes the TCP flags in a transaction.
- Simple 3 packet transaction (TCP only).
- Divide the time delta by two, as we want to compute the network latency that we assume is half the round trip time.

Time

KPM: Network and Application Performance [2/3]

- Application latency is computed as the time needed by an application to react to a client request.
- For TCP connections, application latency is computed on the first packet after three-wayhandshake.
- For UDP connections on the first client-toserver and server-to-client packet.

KPM: Network and Application Performance [3/3]

Protocol Recognition [1/3]

- Recognizing protocols is necessary for many reasons:
 - Know what protocols are occupying the network for good (business) or bad (leisure) reasons.
 - Double-check if claims done when deploying services are really true (e.g. protocol X uses little bandwidth)
 - Identify security flaws (e.g. long-standing SSL/SSH connections).
 - Detect violation of network policies (e.g. well known protocols on non-standard ports).

Protocol Recognition [2/3]

- nDPI is a DPI library based on OpenDPI (GPL) to which:
 - We have added several new protocols (e.g. YouTube, Skype, Twitter, FaceBook, Citrix, SSL, email) for a total of over 130 protocols in total.
 - We have made some code changes that made it faster for our network monitoring needs.
 - It can use the protocol+port as fallback in case DPI is not applicable (e.g. we have missed the initial 3-way handshake).

Protocol Recognition [3/3]

Combining Protocol Recognition with Performance

- KPMs are selected based on the protocol.
 - Low network latency (i.e. network delay) is required by interactive (e.g. SSH) and multimedia (e.g.VoIP) protocols.
 - High throughput is desirable for data transfer protocols (e.g. file transfer).
- NetEye can be used to produce alerts based on the protocol so that alarms are emitted only when it make sense.

Network Trends [1/2]

- For years monitoring systems have computed network trends only based on packets and bytes.
- While this practice is correct, it limits its scope to network bandwidth growth.
- As we measure many KPMs, we can finally put an eye also on many other indicators.
- This allows network administrators to also evaluate how changes they do on the network affect user's network experience.

Network Trends [2/2]

- A list of trends we measure include (but are not limited to):
 - Network latency.
 - Application response time.
 - Packet loss.
 - Jitter (VoIP).
 - TTL (number of hops to a destination).
 - Packet retransmissions.
 - Packets out-of-order.

Evaluating Traffic Quality

- We're developing a numeric nProbe flow quality index that represents various flow aspects:
 - Packet quality (e.g. good 3-way handshake, fragments).
 - Flow bandwidth (linear or fuzzy flow throughput).
 - Known protocols on non standard ports (are people trying to circumvent network policies?).
 - Traffic exchanged with malware sites (e.g. integration with blacklists from malwaredomains.com).
 - Flow health (e.g. HTTP flows that have been stopped, or with unexpected latency).

Summary

- Accurate protocol and performance measurement is the key difference between ntop +NetEye and similar solutions.
- Precise problem report and rich KPMs production give network administrator a comprehensive view of their network.
- Capitalizing on open-source grants quick product evolution and ability to add extensions, otherwise not possible with closed-source products.

