
Monitoring Web Services - Webinject

Introduction: The problem

Todays web sites provide advanced web services with user authentication and interaction. Therefore it is no more

enough for monitoring to write a test checking if a web server responds on a port, i.e. 80.

For this purpose comes WebInject, a tool for automated testing of web applications and web services. With this testing

framework it is possible to configure a complete login procedure into a web service and check the returned answers

from the web server. It can be used to test individual system components that have HTTP interfaces (JSP, ASP, CGI,

PHP, AJAX, Servlets, HTML Forms, XML/SOAP Web Services, REST, etc), and can be used as a test harness to create a

suite of [HTTP level] automated functional, acceptance, and regression tests. A test harness allows you to run many

test cases and collect/report your results. WebInject offers real-time results display and may also be used for

monitoring system response times.

Web 2.0 Monitoring with NetEye

The fist step consists in the definition of test cases used to query for the availability of a web service and the

evaluation of the responce.

Open from the NetEye main menu “Configuraion” → ” NetEye Configuration” to open the configuration selector. From

there select “Web 2.0 Monitoring” to access the main view with a list of all configured Webinject test cases and the

global configuration file config.xml.

Available action commands:

NEW testcase definition form button

EDIT: Modify an existing webinject testcases configuration through a user web form

neteye:implementation:webinject [NetEye Documentation Pages] http://neteye-install/wiki/doku.php?id=neteye:implementation:webinjec...

1 of 13 27/1/2010 13:50

XML VIEW: View and modify directly the xml code of the webinject testcase configuration

NAGIOS CONFIGURAGTION: Instruction on how to integrate an xml testcase configuration into the automated

monitoring of Nagios with NetEye

DELETE the testcase configuration (the global configuration config.xml can never be deleted)

RUN and DEBUG a defined testcase configuration with webinject and view the detailled results

NEW TESTCASE

Click on the button “Define a new testcase” and fill into the form:

The name for the new testcase collection: this will be the name used for the file (therefore the use of special

characters if not suggested)

The case ID is generated automatically and will be at the moment of the definition “1”. (Afterwards there can be

defined additional cases through the edit view)

A user fiendly description of the purpose of this check

The URL to upen. The URL can be indicated with variables to post.

In alternative the send menthod can be changed from “GET” method to “POST” and a POSTBODY can be defined. (

A postbody may have this syntax to send a username and password variable: postbody=“username=corey&

password=welcome”)

With Posttype can be defined the kind of encoding to use. By default “application/x-www-form-urlencoded” is

suggested.

String to be found in the response HTML code

String to NOT to be found in the response HTML code

Parseresponse:

The main view after confirm:

neteye:implementation:webinject [NetEye Documentation Pages] http://neteye-install/wiki/doku.php?id=neteye:implementation:webinjec...

2 of 13 27/1/2010 13:50

EDIT / EXTEND the testcase

Click on the “tools” icon in the row of the testcase to edit, to open the editor for adding additional testcases.

Click on the button “Insert a case at ID 2” to add another case after the first one. - Later it will be possible to insert

cases at every ID, but never substituting the first one.

Here we define now a query for a train from Bozen/Bolzano to Trento passing all search parameters as GET

arguments with the URL.

Click on “Apply” to save or on “Submit configuration” to save all changes and to return to the main view.

neteye:implementation:webinject [NetEye Documentation Pages] http://neteye-install/wiki/doku.php?id=neteye:implementation:webinjec...

3 of 13 27/1/2010 13:50

Now click from the main view on the “Run” icon to perform a test exectuion of the just created testcase configuration:

neteye:implementation:webinject [NetEye Documentation Pages] http://neteye-install/wiki/doku.php?id=neteye:implementation:webinjec...

4 of 13 27/1/2010 13:50

Parsing with regular expressions

After retruning again to the edit forms and adding a third case, we fill in the following information to parse for a

determined tag - content combination:

neteye:implementation:webinject [NetEye Documentation Pages] http://neteye-install/wiki/doku.php?id=neteye:implementation:webinjec...

5 of 13 27/1/2010 13:50

neteye:implementation:webinject [NetEye Documentation Pages] http://neteye-install/wiki/doku.php?id=neteye:implementation:webinjec...

6 of 13 27/1/2010 13:50

neteye:implementation:webinject [NetEye Documentation Pages] http://neteye-install/wiki/doku.php?id=neteye:implementation:webinjec...

7 of 13 27/1/2010 13:50

Failing configuration example

The debug view of the HTML code:

neteye:implementation:webinject [NetEye Documentation Pages] http://neteye-install/wiki/doku.php?id=neteye:implementation:webinjec...

8 of 13 27/1/2010 13:50

XML direct editing

Simply click on the “XML” icon in the main menu and view / edit the xml code

neteye:implementation:webinject [NetEye Documentation Pages] http://neteye-install/wiki/doku.php?id=neteye:implementation:webinjec...

9 of 13 27/1/2010 13:50

The global configuration: config.xml

The main configuration holds values regarding the overall behaviour. Important variables are the setup of the proxy

and the timeouts. Within this configuration there are stored automatically also all testcase-configurations created with

the webinterface form.

neteye:implementation:webinject [NetEye Documentation Pages] http://neteye-install/wiki/doku.php?id=neteye:implementation:webinjec...

10 of 13 27/1/2010 13:50

Overview of Webinject core

Webinject architecure:

Global configuration

neteye:implementation:webinject [NetEye Documentation Pages] http://neteye-install/wiki/doku.php?id=neteye:implementation:webinjec...

11 of 13 27/1/2010 13:50

The global configuration of webinject is stored in the configuration file /opt/neteye/webinject/config.xml

Patameters:

Set use of proxy:

http://username:password@127.0.0.1:8080

If desired to pass the request by indicating the web user agent

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)

Log test cases: yes | onfail:

yes

Timeout:

10

The report output for Nagios structure:

nagios

Timeout for use with Nagios: Also if tests succeed, but overall execution of all tests takes longer than globaltimeout

a warning is returned

10

Writing a test case

Webinject provides a dedicated xml structure for the definition of an effective test case.

Define inside the /opt/neteye/webinject/config.xml the file of the testcase to use:

test_google.xml

Create the file test_google.xml in /opt/neteye/webinject

Define the number of times the testcase to repeat: Write the opening and closing tag

IN BETWEEN THE TAGS “testcases” define now the first case to perform:

id: Set id for numbering of testcases

description: Description of the testcase

method: get | post

postbody: used to set values for post method

postbody="username=corey&password=welcome"

url: url to web service

posttype: specify content encoding. (default is: “application/x-www-form-urlencoded”)

verifypositive=“PHOENIX NetEye”: Check if the string can be found in the http response

verifynegative: same as above just for negative determination

verifynextpositive/verifynextnegative: Response string for verification in next test case

logrequest=“yes” Activates HTTP request log to http.log

logresponse=“yes” Activates HTTP response log to http.log

parseresponse='href=“leftboundary|rightboundary”

errormessage: In case of test failure returned message

Implementing the scheduled check in NetEye

Now the check can be implemented in NetEye. For this open the NetEye web-interface on Monarch and define a new

Command:

Name: check_webinject

Command: (without using a macro) /opt/neteye/webinject/webinject.sh $ARG1$

Now define a new Service by cloning an existing one (i.e. Ping):

neteye:implementation:webinject [NetEye Documentation Pages] http://neteye-install/wiki/doku.php?id=neteye:implementation:webinjec...

12 of 13 27/1/2010 13:50

Rename the clone to “WEBINJECT”

Select the Service check tab: Select check command “check_webinject”

Complete the Command line to get: check_webinject!test_google.xml

Save

Apply this check on the desired host and Commit to start scheduled checking.

Webinject Copyright

© Copyright 2004-2006 Corey Goldberg

corey@goldb.org [mailto:corey@goldb.org] - www.goldb.org [http://www.goldb.org/]

neteye/implementation/webinject.txt � Last modified: 2010/01/27 13:50 by root

neteye:implementation:webinject [NetEye Documentation Pages] http://neteye-install/wiki/doku.php?id=neteye:implementation:webinjec...

13 of 13 27/1/2010 13:50

