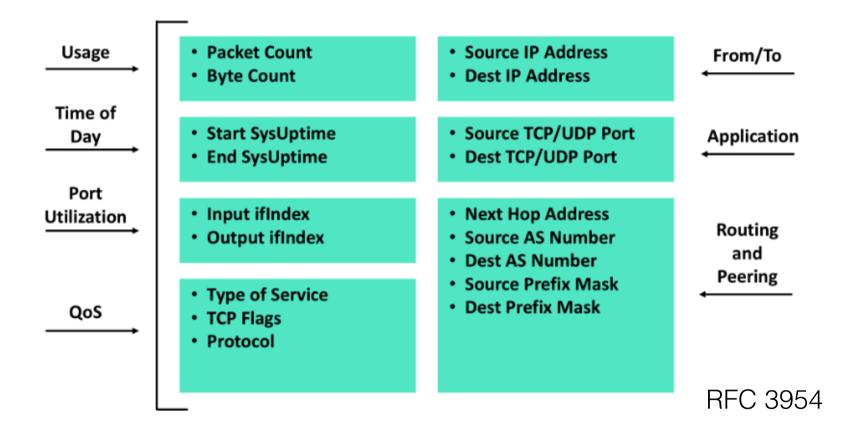

How to Monitor What Matters

Luca Deri <deri@ntop.org>
@lucaderi

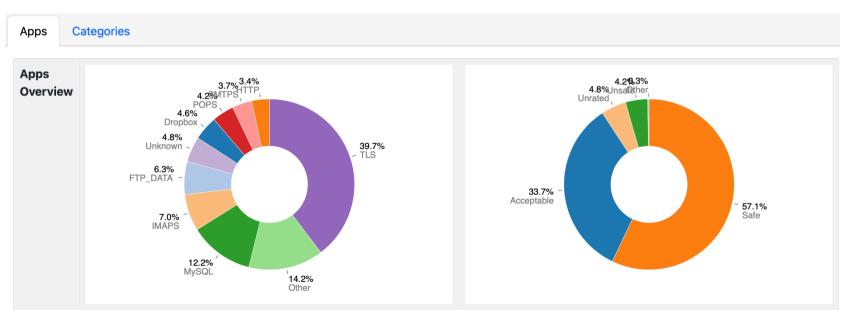


25 Years Ago (1998)

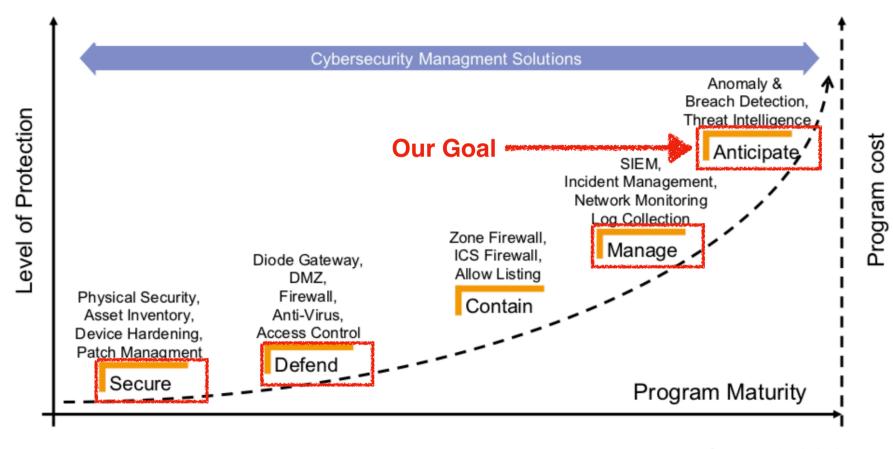
What's Inside a Flow? (2004)

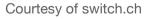
Flow Analysis: Pros and Cons

- Many network vendors are not fully compliant with standard, making flowbased measurement a nightmare.
- Cloud providers defined new proprietary (AWS Cloud VPC, 2009):

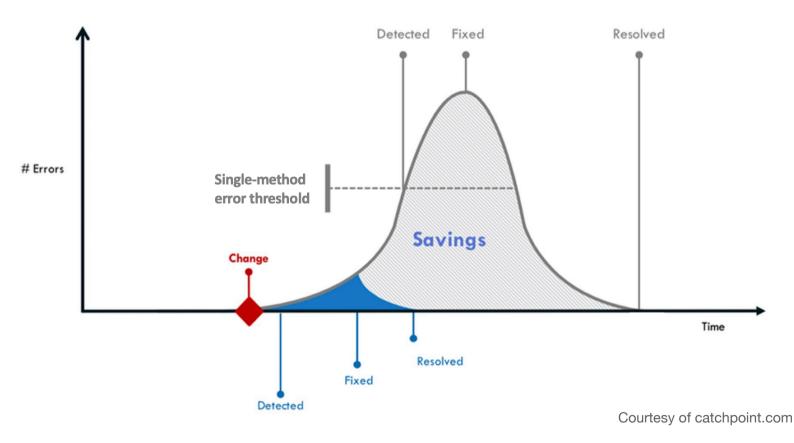

```
account-id action az-id bytes dstaddr dstport end flow-direction instance-id interface-id log-status packets pkt-dst-aws-service pkt-dstaddr pkt-src-aws-service pkt-srcaddr protocol region srcaddr srcport start sublocation-id sublocation-type subnet-id tcp-flags traffic-path type version vpc-id 421717577885 ACCEPT use1-az6 396 10.113.39.219 80 1640154903 ingress - eni-0afec37a7c4be140d 0K 5 - 10.113.39.219 - 10.113.39.208 6 us-east-1 10.113.39.208 7652 1640154859 - subnet-048dbd0af4e64ae1f 3 - IPv4 5 vpc-0f4cdb08d3b1bcdf6 421717577885 ACCEPT use1-az6 1895 10.113.39.208 7652 1640154903 egress - eni-0afec37a7c4be140d 0K 5 - 10.113.39.208 - 10.113.39.219 6 us-east-1 10.113.39.219 80 1640154859 - subnet-048dbd0af4e64ae1f 19 1 IPv4 5 vpc-0f4cdb08d3b1bcdf6
```

- Traditional traffic analysis is often still limited to simple top/bottom X (elephants/mice) statistics: top talkers/ASs/protocols.
- In summary: no application protocol visibility, lack of detailed network metrics, and pool vendor implementations prevented advances in this area for a long time.


nDPI (2012)


- Inspect packet payload (including encrypted content) and detect the used application protocol (e.g. TLS.Teams).
- Enhanced flows providing contextual information.

From "Manage" to "Anticipate" (2021)



How Can we Anticipate a Problem?

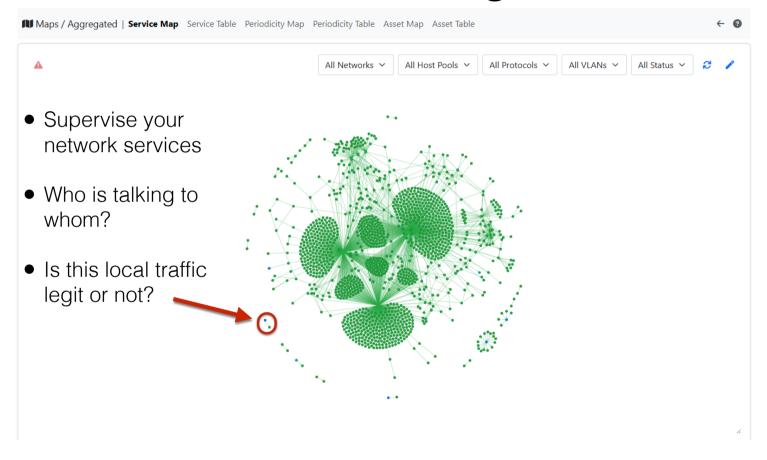
- Monitoring can show you when a problem is happening or (better) what are metrics that can be an indication of a <u>future problem</u>.
- Modern observability systems provide many metrics that human operators cannot analyse fully, as they are simply too many.
- System visibility is required to complement network visibility and predict issues when network signals are hidden (e.g. by cryptography).
- How can we make our monitoring systems smarter and simpler to use for users.

Detect, Identify, Fix. Faster.

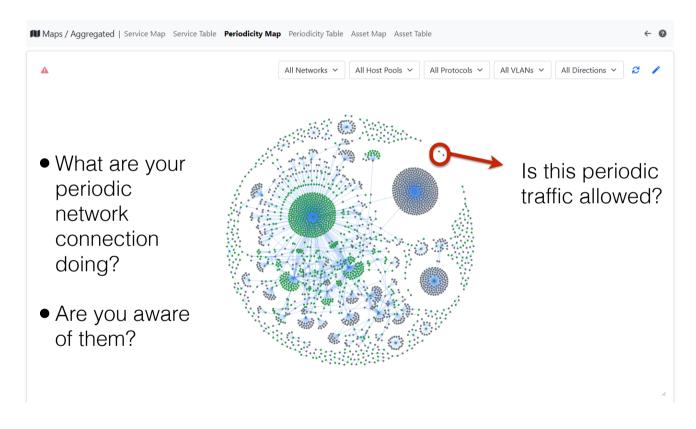
Make Invisible Visible

- HTTP suspicious user-agent
- HTTP numeric IP host contacted
- HTTP suspicious URL
- HTTP suspicious protocol header
- TLS connections not carrying HTTPS (e.g. a VPN over TLS)
- Suspicious DGA domain contacted
- Malformed packet
- SSH/SMB obsolete protocol or application version
- TLS suspicious ESNI usage
- Unsafe Protocol used
- Suspicious DNS traffic
- TLS with no SNI
- XSS (Cross Site Scripting)
- SQL Injection

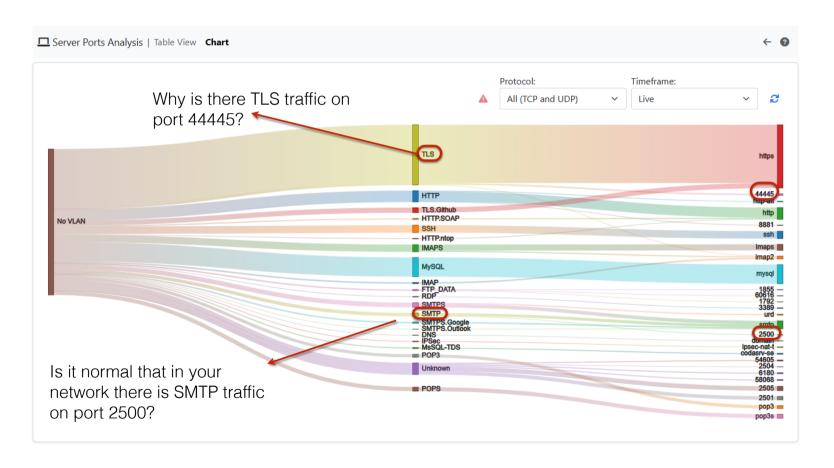
- Arbitrary Code Injection/Execution
- Binary/.exe application transfer (e.g. in HTTP)
- Known protocol on non standard port
- TLS self-signed certificate
- TLS obsolete version
- TLS weak cipher
- TLS certificate expired
- TLS certificate mismatch
- DNS suspicious traffic
- HTTP suspicious content
- Risky ASN
- Risky Domain Name
- Malicious JA3 Fingerprint
- Malicious SHA1 Certificate
- Desktop of File Sharing Session
- TLS Uncommon ALPN


TLS Certificate Validity Too Long

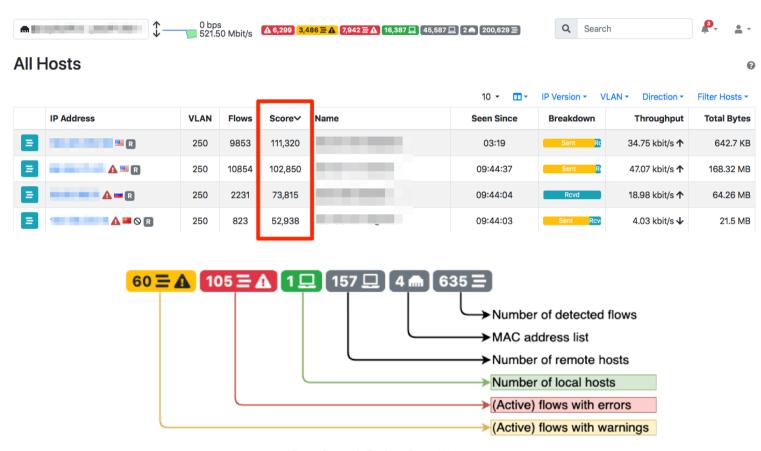
- Suspicious TLS Extension
- TLS Fatal Alert
- Suspicious Protocol traffic Entropy
- Clear-text Credentials Exchanged
- DNS Large Packet
- DNS Fragmented Traffic
- Invalid Characters Detected
- Possible Exploit Detected
- TLS Certificate Close to Expire
- Punycode/IDN Domain
- Error Code Detected
- Crawler/Bot Detected
- Anonymous Subscriber
- Unidirectional Traffic
- HTTP Obsolete Server
-


Legenda: Clear Text Only, Encrypted/Plain Text, Encrypted Only

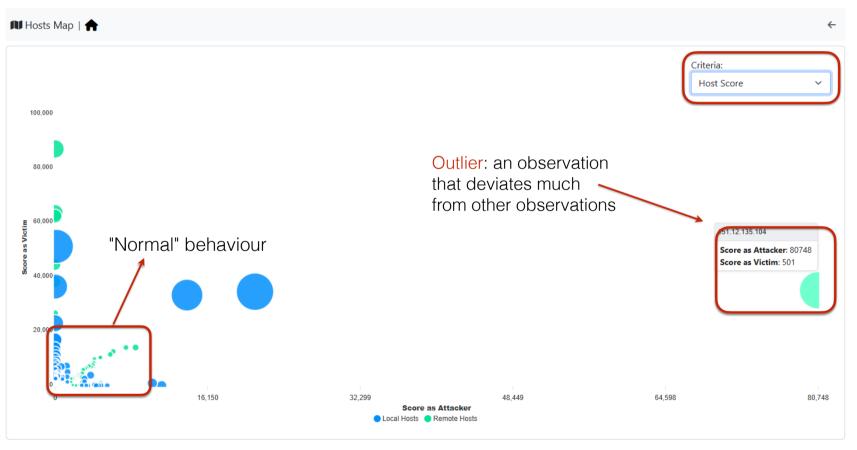
Detect Changes



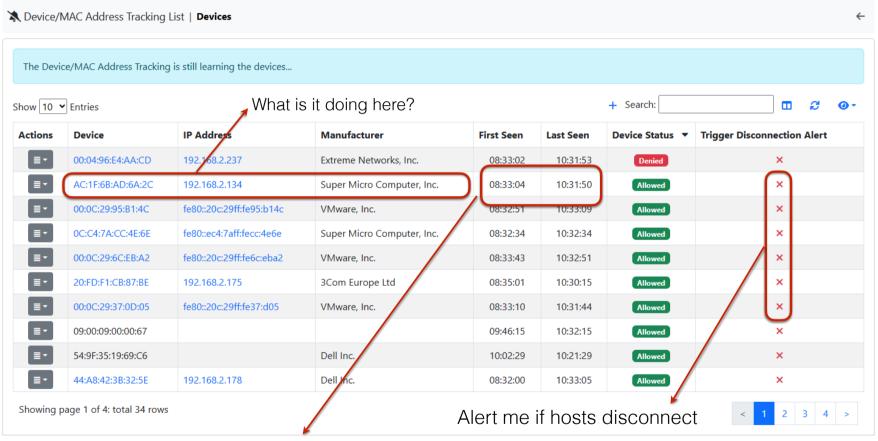
Identify Beaconing

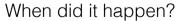


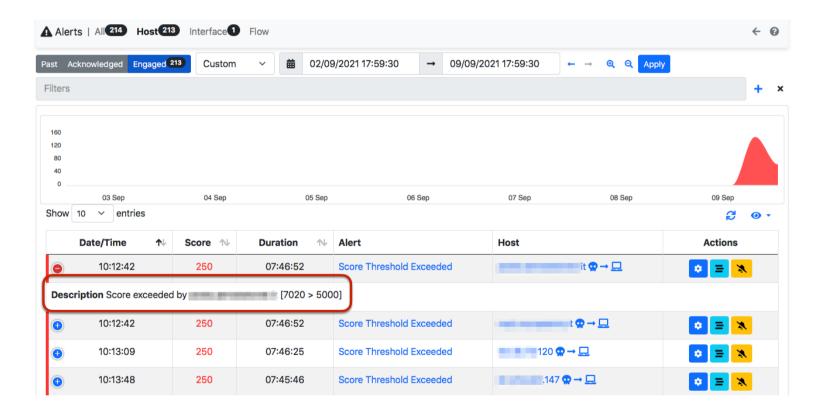
Fix Unwanted Traffic

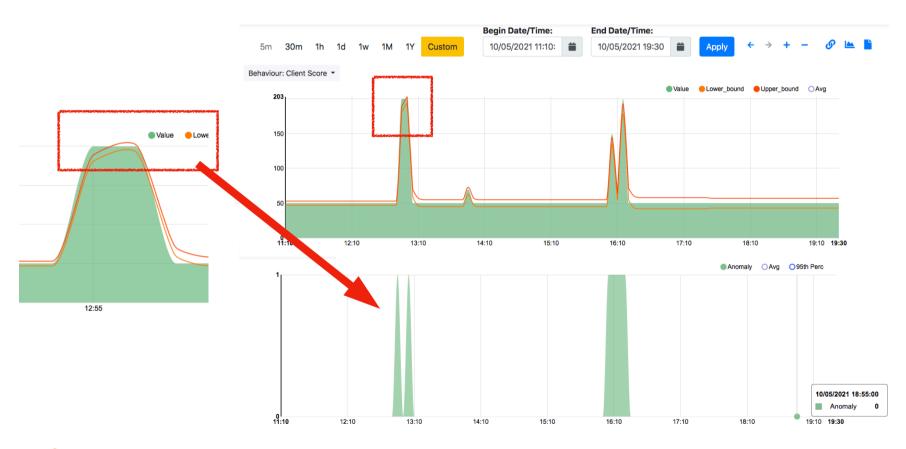


Label "Unhealthy" Activities




Spot CyberThreats


Burglar Alarms

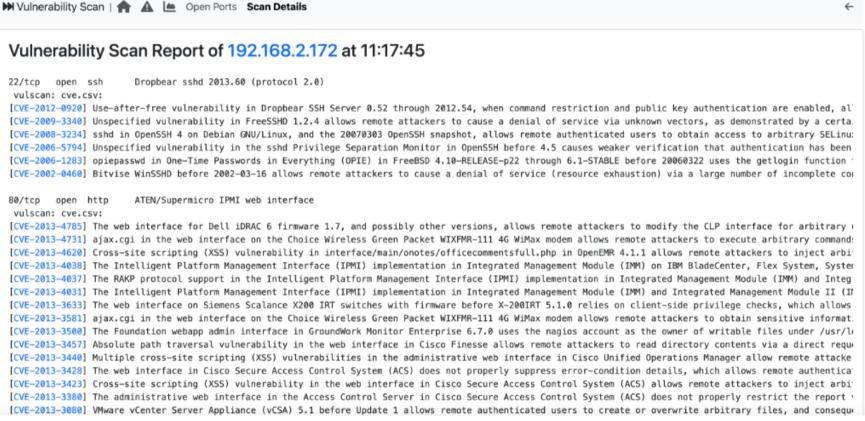


Threshold-based Alerts

Behavioural Alerts

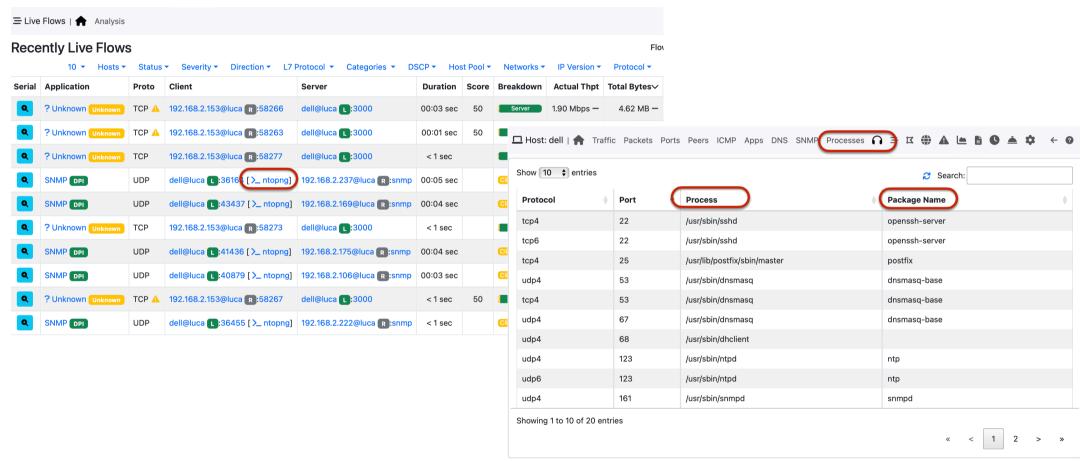
User Experience Monitoring

				10 ▼ Hosts ▼ Status ▼ Severity ▼ Direction ▼	L7 Protocol 🔻	7 ▼ Cate	egories • DS0	CP ▼ Host Pool	I ▼ Networks ▼	IP Version ▼ Protoc
Serial	Application	Proto	Client	Server	Duration	Score	Breakdown	Actual Thpt	Total Bytes∨	Info
Q	S STUN.Skype_T DPI	UDP 🛕	imacm1 R :50014	host-82-51-138-80.retail.telecomital R :59225	< 1 sec	50	Client Server	0 bps	726.86 KB	Audio Stream
Q	S STUN.Skype_T DPI	UDP 🛕	192.168.1.125 R :50042	imacm1 (R :50044	< 1 sec	50	Server	0 bps	400.04 K B	Screen Sharing Stream
Q	S STUN.Skype_T DPI	UDP (1)	imacm1 R :50054	52.114.227.13 R :nat-stun-port	< 1 sec	10	Client	0 bps	58.76 K 3	◄ 沙 Audio Stream
Q	S STUN.Skype_T DPI	UDP	imacm1 R :50014	52.114.227.31 R :nat-stun-port	< 1 sec		Client	0 bps	8.87 K 3	◄)) Audio Stream
Q	S STUN.Skype_T DPI	UDP (1)	imacm1 R :50020	52.114.227.44 R :nat-stun-port	< 1 sec	10	Client	0 bps	7.74 K 3	◄ ® Audio Stream
Q	S STUN.Skype_T DPI	UDP (1)	imacm1 R :50032	52.114.227.38 R :nat-stun-port	< 1 sec	10	Client	0 bps	7.31 K 3	Audio Stream
Q	STUN.Skype_T DPI	UDP 🔔	imacm1 R :50032	host-82-51-138-80.retail.telecomital R :57022	< 1 sec	50	Client	0 bps	7.03 K 3	Video Stream
Q	STUN.Skype_T DPI	UDP 🔔	imacm1 R :50054	host-82-51-138-80.retail.telecomital R :52292	< 1 sec	50	Client	0 bps	5.46 K 3	Screen Sharing Stream
Q	STUN.Skype_T DPI	UDP 🕦	imacm1 R:50044	52.114.227.31 R :nat-stun-port	< 1 sec	10	Client	0 bps	3.4 K 3	Audio Stream
Q	S STUN.Skype_T DPI	UDP 🔔	imacm1 R :50020	host-82-51-138-80.retail.telecomital R :49621	< 1 sec	50	Client	0 bps	3.27 KB	■ Video Stream

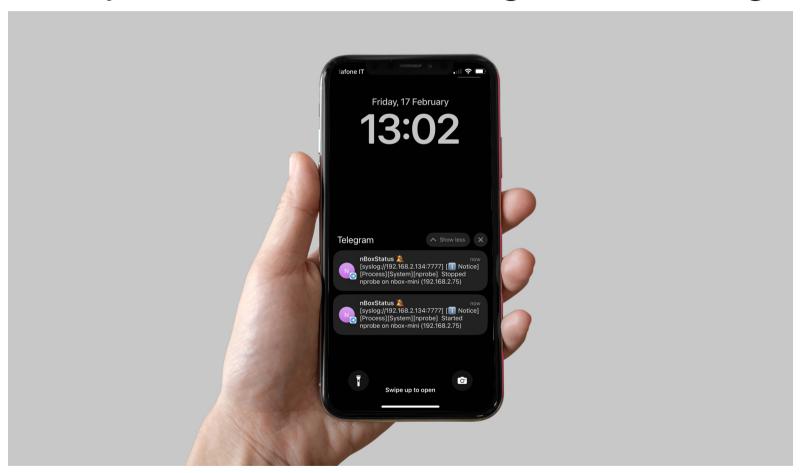

[NFv9	57626][IPFIX	35632.154] [Len	4]	%RTP_IN_JITTER
[NFv9	57627] [IPFIX	35632.155] [Len	4]	%RTP_OUT_JITTER
[NFv9	57628] [IPFIX	35632.156] [Len	4]	%RTP IN PKT LOST
[NFv9	57629] [IPFIX	35632.157] [Len	4]	%RTP_OUT_PKT_LOST
[NFv9	57902][IPFIX	35632.430] [Len	4]	%RTP_IN_PKT_DR0P
[NFv9	57903] [IPFIX	35632.431] [Len	4]	%RTP OUT PKT DROP
[NFv9	57633] [IPFIX	35632.161] [Len	1]	%RTP IN PAYLOAD TYPE
[NFv9	57630][IPFIX	35632.158] [Len	1]	%RTP_OUT_PAYLOAD_TYPE
[NFv9	57631] [IPFIX	35632.159] [Len	4]	%RTP IN MAX DELTA
[NFv9	57632][IPFIX	35632.160] [Len	4]	%RTP_OUT_MAX_DELTA
[NFv9	57820] [IPFIX	35632.348] [Len	64	varlen] %RTP SIP CALL ID
[NFv9	57906] [IPFIX	35632.434] [Len	4]	%RTP_MOS
[NFv9	57842][IPFIX	35632.370] [Len	4]	%RTP_IN_MOS
[NFv9	57904] [IPFIX	35632.432] [Len	4]	%RTP OUT MOS
[NFv9	57908][IPFIX	35632.436] [Len	4]	%RTP_R_FACTOR
[NFv9	57843][IPFIX	35632.371] [Len	4]	%RTP_IN_R_FACTOR
[NFv9	57905][IPFIX	35632.433] [Len	4]	%RTP_OUT_R_FACTOR
[NFv9	57853][IPFIX	35632.381] [Len	4]	%RTP_IN_TRANSIT
[NFv9	57854] [IPFIX	35632.382][Len	4]	%RTP_OUT_TRANSIT
[NFv9	57852][IPFIX	35632.380] [Len	4]	%RTP_RTT
				_

RTP jitter (ms * 1000)
Packet lost in stream (src->dst)
Packet lost in stream (dst->src)
Packet discarded by Jitter Buffer (src->dst)
Packet discarded by Jitter Buffer (dst->src)
RTP payload type
RTP payload type
Max delta (ms*100) between consecutive pkts (src->dst)
Max delta (ms*100) between consecutive pkts (dst->src)
IP call-id corresponding to this RTP stream
RTP pseudo-MOS (value * 100) (average both directions)
RTP pseudo-MOS (value * 100) (src->dst)
RTP pseudo-MOS (value * 100) (dst->src)
RTP pseudo-R FACTOR (value * 100) (average both directions)
RTP pseudo-R FACTOR (value * 100) (src->dst)
RTP pseudo-R FACTOR (value * 100) (dst->src)
RTP Transit (value * 100) (src->dst)
RTP Transit (value * 100) (dst->src)
RIP IIdiiSIL (Value * 100) (USL->SIL)

User Satisfaction Level	моѕ	R-Factor
Maximum using G.711	4.4<	93
Excellent	4.3 – 5.0	90 – 100
Good	4.0 – 4.3	80 – 90
Satisfied	3.6 – 4	70 – 80
Dissatisfied	3.1 – 3.6	60 – 70
Fully dissatisfied	2.6 - 3.1	50 - 60
Not recommended	1.0 – 2.6	Less than 50



Patch Your CVEs



Agent vs Agent-Less Monitoring

Notify Me When Something Goes Wrong

In Summary

- Monitor what matters, not what vendors decide
 - Focus is on monitoring every aspect of the internet stack
- Catch issues before they become incidents
 - HD real-time data (bytes/packets are no longer enough)
 - Advanced correlation (monitoring system knows my network better)
 - Experience and cyber scores (quality and security)
 - Analysis/drill-down tools (from alerts to flows to packets

25 Years of Open Source

https://github.com/ntop/

